The Arabidopsis root hair mutants der2-der9 are affected at different stages of root hair development.

نویسندگان

  • Christoph Ringli
  • Nicolas Baumberger
  • Beat Keller
چکیده

Root hairs are an excellent model system to study cell developmental processes as they are easily accessible, single-celled, long tubular extensions of root epidermal cells. In a genetic approach to identify loci important for root hair development, we have isolated eight der (deformed root hairs) mutants from an ethylmethanesulfonate (EMS)-mutagenized Arabidopsis population. The der lines represent five new loci involved in root hair development and show a variety of abnormalities in root hair morphology, indicating that different root hair developmental stages are affected. A double mutant analysis with the short root hair actin2 mutant der1-2 confirmed that the der mutants are disturbed at different time points of root hair formation. Auxin and ethylene are known to be important for trichoblast cell fate determination and root hair elongation. Here, we show that they are able to suppress the phenotype of two der mutants. As the auxin- and ethylene-responsive der mutants are affected at different stages of root hair formation, our results demonstrate that the function of auxin and ethylene is not limited to cell differentiation and root hair elongation but that the two hormones are effective throughout the whole root hair developmental process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Control of Root Hair Development in Arabidopsis thaliana.

Visual examination of roots from 12,000 mutagenized Arabidopsis seedlings has led to the identification of more than 40 mutants impaired in root hair morphogenesis. Mutants from four phenotypic classes have been characterized in detail, and genetic tests show that these result from single nuclear recessive mutations in four different genes designated RHD1, RHD2, RHD3, and RHD4. The phenotypic a...

متن کامل

Environmentally induced plasticity of root hair development in Arabidopsis.

Postembryonic development of plants is dependent on both intrinsic genetic programs and environmental factors. The plasticity of root hair patterning in response to environmental signals was investigated in the Columbia-0 wild type and 19 Arabidopsis mutants carrying lesions in various parts of the root hair developmental pathway by withholding phosphate or iron (Fe) from the nutrient medium. I...

متن کامل

Root hair initiation is coupled to a highly localized increase of xyloglucan endotransglycosylase action in Arabidopsis roots.

Root hairs are formed by two separate processes: initiation and subsequent tip growth. Root hair initiation is always accompanied by a highly localized increase in xyloglucan endotransglycosylase (XET) action at the site of future bulge formation, where the trichoblast locally loosens its cell wall. This suggests an important role of XET in the first stages of root hair initiation. The tip of g...

متن کامل

Arabidopsis root hair development in adaptation to iron and phosphate supply

D i s s e r t a t i o n zur Erlangung des akademischen Grades d o c t o r r e r u m n a t u r a l i u m ABSTRACT Limitation of immobile nutrients, such as iron (Fe) and phosphate (P), induces the development of additional root hairs that lead to an increase of the absorptive surface of the root. The increased root hair frequency of Fe-and P-deficient Arabidopsis was realized by different strate...

متن کامل

The GLABRA2 homeodomain protein directly regulates CESA5 and XTH17 gene expression in Arabidopsis roots.

Arabidopsis root hair formation is determined by the patterning genes CAPRICE (CPC), GLABRA3 (GL3), WEREWOLF (WER) and GLABRA2 (GL2), but little is known about the later changes in cell wall material during root hair formation. A combined Fourier-transform infrared microspectroscopy-principal components analysis (FTIR-PCA) method was used to detect subtle differences in the cell wall material b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 46 7  شماره 

صفحات  -

تاریخ انتشار 2005